How to use PyTorch Lightning to train a neural network on a custom dataset?
Published on Aug. 22, 2023, 12:19 p.m.
To use PyTorch Lightning to train a neural network on a custom dataset, you can create a custom PyTorch Dataset and use a PyTorch Lightning DataModule to load and preprocess the data. Here’s an example:
- Define your custom PyTorch Dataset that inherits from
torch.utils.data.Datasetand implements the__getitem__and__len__methods to return samples from your dataset. - Create a PyTorch Lightning DataModule that inherits from
pl.LightningDataModuleand implements thetrain_dataloader,val_dataloaderandtest_dataloadermethods to returnDataLoaderobjects that load batches of samples from your dataset. You can also implement any necessary data preprocessing in these methods. - Define your PyTorch Lightning model that inherits from
pl.LightningModuleand implements thetraining_step,validation_step,test_stepandconfigure_optimizersmethods. - Instantiate a
pl.Trainerobject and pass in your PyTorch Lightning model and DataModule, then call thefitmethod to start training. You can also use thevalidateandtestmethods to evaluate your model on validation and test data, respectively.
Here’s an example code snippet:
import torch
import pytorch_lightning as pl
from torch.utils.data import Dataset, DataLoader
class CustomDataset(Dataset):
def __init__(self, data):
self.data = data
def __getitem__(self, idx):
sample = self.data[idx]
return sample
def __len__(self):
return len(self.data)
class CustomDataModule(pl.LightningDataModule):
def __init__(self, train_data, val_data, test_data, batch_size):
super().__init__()
self.train_data = CustomDataset(train_data)
self.val_data = CustomDataset(val_data)
self.test_data = CustomDataset(test_data)
self.batch_size = batch_size
def train_dataloader(self):
return DataLoader(self.train_data, batch_size=self.batch_size)
def val_dataloader(self):
return DataLoader(self.val_data, batch_size=self.batch_size)
def test_dataloader(self):
return DataLoader(self.test_data, batch_size=self.batch_size)
class CustomModel(pl.LightningModule):
def __init__(self, input_size, output_size):
super().__init__()
self.fc = torch.nn.Linear(input_size, output_size)