深度阅读

How to view the data type of a column or specific value in a Pandas DataFrame

作者
作者
2023年08月22日
更新时间
12.67 分钟
阅读时间
0
阅读量

To view the data type of a column or specific value in a Pandas DataFrame, you can use the dtypes attribute to view the data types of all columns:

import pandas as pd

# create a Pandas DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': ['4', '5', '6']})

# view the data types of all columns
print(df.dtypes)

This will output the data types of all columns in the DataFrame.

If you want to view the data type of a specific value, you can use the dtype attribute of the Series object that represents the column containing the value:

import pandas as pd

# create a Pandas DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': ['4', '5', '6']})

# view the data type of a specific value
print(df['A'][0].dtype)

In this example, we view the data type of the first value in the column ‘A’ of the DataFrame.

Alternatively, you can use the info() method to view the data types of all columns, and the number of non-null values in each column:

import pandas as pd

# create a Pandas DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': ['4', '5', '6']})

# view the data types of all columns and number of non-null values
print(df.info())

This will output the data types and number of non-null values for each column in the DataFrame.

相关标签

博客作者

热爱技术,乐于分享,持续学习。专注于Web开发、系统架构设计和人工智能领域。