Default / 自然语言 / 默认 · August 31, 2021

ROUGE 包评估汇总质量的Python包装器 kaggle上配合optuna

Table of Content

2021-06-13 记事

ROUGE 包评估汇总质量的Python包装器

def shift_tokens_right(input_ids, pad_token_id):

""" Shift input ids one token to the right, and wrap the last non pad token (usually ).

This is taken directly from


prev_output_tokens = input_ids.clone()

index_of_eos = ( - 1).unsqueeze(-1)

prev_output_tokens[:, 0] = input_ids.gather(1, index_of_eos).squeeze()

prev_output_tokens[:, 1:] = input_ids[:, :-1]

return prev_output_tokens

def encode_sentences(tokenizer, source_sentences, target_sentences, max_length\=32, pad_to_max_length\=True, return_tensors\="pt"):

''' Function that tokenizes a sentence

Args: tokenizer - the BART tokenizer; source and target sentences are the source and target sentences

Returns: Dictionary with keys: input_ids, attention_mask, target_ids


input_ids = []

attention_masks = []

target_ids = []

tokenized_sentences = {}

for sentence in source_sentences:

encoded_dict = tokenizer(



padding="max_length" if pad_to_max_length else None,



add_prefix_space = True




input_ids =, dim = 0)

attention_masks =, dim = 0)

for sentence in target_sentences:

encoded_dict = tokenizer(



padding="max_length" if pad_to_max_length else None,



add_prefix_space = True


# Shift the target ids to the right

# shifted_target_ids = shift_tokens_right(encoded_dict['input_ids'], tokenizer.pad_token_id)


target_ids =, dim = 0)

batch = {

"input_ids": input_ids,

"attention_mask": attention_masks,

"labels": target_ids,


return batch

def noise_sentence(sentence_, percent_words, replacement_token = ""):


Function that noises a sentence by adding tokens

Args: sentence - the sentence to noise

percent_words - the percent of words to replace with tokens; the number is rounded up using math.ceil

Returns a noised sentence


# Create a list item and copy

sentence_ = sentence_.split(' ')

sentence = sentence_.copy()

num_words = math.ceil(len(sentence) * percent_words)

# Create an array of tokens to sample from; don't include the last word as an option because in the case of lyrics

# that word is often a rhyming word and plays an important role in song construction

sample_tokens = set(np.arange(0, np.maximum(1, len(sentence)-1)))

words_to_noise = random.sample(sample_tokens, num_words)

# Swap out words, but not full stops

for pos in words_to_noise:

if sentence[pos] != '.':

sentence[pos] = replacement_token

# Remove redundant spaces

sentence = re.sub(r' {2,5}', ' ', ' '.join(sentence))

# Combine concurrent tokens into a single token; this just does two rounds of this; more could be done

sentence = re.sub(r' ', "", sentence)

sentence = re.sub(r' ', "", sentence)

return sentence



使用 #Ray #Tune 扩展 #Optuna

OptunaRay Tune是 Python中超参数调优的两个主要工具。Optuna为高级超参数搜索算法(如Tree-Parzen Estimators )提供了一个易于使用的界面。这使其成为现代机器学习工程师或数据科学家的宝贵工具,也是其受欢迎的关键原因。

Optuna擅长单机工作负载,但并行处理这些工作负载需要手动操作,可能在多台机器上,并且不包括监控能力。如果您想尽可能高效利用 GPU,这会使操作变得特别具有挑战性。您不仅需要明智地选择参数,还需要一种组织执行的方法。这就是Ray Tune闪耀的地方。

Ray Tune接受您的训练功能并自动将其并行化,负责资源管理,甚至可以将其分布在一组机器上。您所要做的就是运行一个脚本!在一个完美的世界中,我们将能够同时使用Optuna的出色算法和Ray Tune的出色缩放功能。,is%20one%20of%20these%20frameworks!&text=Even%20better%2C%20if%20you%20use,currently%20not%20available%20in%20Optuna.

# Using PyTorch Lightning with Tune


PyTorch Lightning ModelCheckpoint

from pytorch_lightning.callbacks import ModelCheckpoint

class LitAutoEncoder(LightningModule):
def validation_step(self, batch, batch_idx):
x, y \= batch
y_hat \= self.backbone(x)
loss \= F.cross_entropy(y_hat, y)
self.log('val_loss', loss)

# saves a file like: my/path/sample-mnist-epoch=02-val_loss=0.32.ckpt
checkpoint_callback \= ModelCheckpoint(
filename\='sample-mnist-{epoch:02d}-{val_loss:.2f}', # 这个很重要,便于选择最优的检出点

trainer \= Trainer(callbacks\=[checkpoint_callback])

#pytorch-lightning -template


class LitModel(pl.LightningModule): <pre><code>def \_\_init\_\_(...): def forward(...): def training\_step(...) def training\_step\_end(...) def training\_epoch\_end(...) def validation\_step(...) def validation\_step\_end(...) def validation\_epoch\_end(...) def test\_step(...) def test\_step\_end(...) def test\_epoch\_end(...) def configure\_optimizers(...) def any\_extra\_hook(...) </code></pre>


Pretrained #SOTA Deep Learning models, callbacks and more for research and production with #PyTorch #Lightning and #PyTorch

#SLURM 托管集群

Lightning 在 SLURM 驱动的集群上自动化训练背后的细节。与上面的通用集群相反,用户不会在每个节点上手动启动作业,而是将其提交给 SLURM,SLURM 会安排允许作业运行的资源和时间。

#PyTorch Tabular

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike. The core principles behind the design of the library are:


task可选择regression /classification

from pytorch_tabular import TabularModel from pytorch_tabular.models import CategoryEmbeddingModelConfig from pytorch_tabular.config import DataConfig, OptimizerConfig, TrainerConfig, ExperimentConfig data_config = DataConfig( target=['target'], #target should always be a list. Multi-targets are only supported for regression. Multi-Task Classification is not implemented continuous_cols=num_col_names, categorical_cols=cat_col_names, ) trainer_config = TrainerConfig( auto_lr_find=True, # Runs the LRFinder to automatically derive a learning rate batch_size=1024, max_epochs=100, gpus=1, #index of the GPU to use. 0, means CPU ) optimizer_config = OptimizerConfig() model_config = CategoryEmbeddingModelConfig( task="classification", layers="1024-512-512", # Number of nodes in each layer activation="LeakyReLU", # Activation between each layers learning_rate = 1e-3 ) tabular_model = TabularModel( data_config=data_config, model_config=model_config, optimizer_config=optimizer_config, trainer_config=trainer_config, ), validation=val) result = tabular_model.evaluate(test) pred_df = tabular_model.predict(test) tabular_model.save_model("examples/basic") loaded_model = TabularModel.load_from_checkpoint("examples/basic")


Pytorch Forecasting是一个基于 PyTorch 的包,用于使用最先进的网络架构预测时间序列。它为Pandas数据帧上的训练网络提供了一个高级 API,并利用 PyTorch Lightning在(多个)GPU、CPU 和自动日志记录上进行可扩展的训练。

#transformers 和pytorch_lightning构建qa模型,不要太简单

import nlp import torch import transformers as tfs import pytorch_lightning as pl class QAModel(pl.LightningModule): def <strong>init</strong>(self, hparams): super().<strong>init</strong>() self.hparams = hparams self.model = tfs.AutoModelForQuestionAnswering.from_pretrained(hparams.qa_model) <pre><code>def forward(self, x): return self.model(**x) def training_step(self, batch, batch_idx): outputs = self(batch) loss = outputs[0] return {'loss': loss, 'log': {'train_loss': loss}} def configure_optimizers(self): return torch.optim.Adam(self.parameters(), def train_dataloader(self): pass </code></pre>

#tpot 自动机器学习库基sklearn

#autokeras 自动深度学习库

AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras is to make machine learning accessible to everyone.


H2O is an in-memory platform for distributed, scalable machine learning. H2O uses familiar interfaces like R, Python, Scala, Java, JSON and the Flow notebook/web interface, and works seamlessly with big data technologies like Hadoop and Spark. H2O provides implementations of many popular algorithms such as Generalized Linear Models (GLM), Gradient Boosting Machines (including XGBoost), Random Forests, Deep Neural Networks, Stacked Ensembles, Naive Bayes, Generalized Additive Models (GAM), Cox Proportional Hazards, K-Means, PCA, Word2Vec, as well as a fully automatic machine learning algorithm (H2O AutoML).

%d bloggers like this: